Functional organization of sensory input to the olfactory bulb glomerulus analyzed by two-photon calcium imaging.
نویسندگان
چکیده
Glomeruli in the olfactory bulb are anatomically discrete modules receiving input from idiotypic olfactory sensory neurons. To examine the functional organization of sensory inputs to individual glomeruli, we loaded olfactory sensory neurons with a Ca(2+) indicator and measured odorant-evoked presynaptic Ca(2+) signals within single glomeruli by using two-photon microscopy in anaesthetized mice. Odorants evoked patterns of discrete Ca(2+) signals throughout the neuropil of a glomerulus. Across glomeruli, Ca(2+) signals occurred with equal probability in all glomerular regions. Within single glomeruli, the pattern of intraglomerular Ca(2+) signals was indistinguishable for stimuli of different duration, identity, and concentration. Moreover, the response time course of the signals was similar throughout the glomerulus. Hence, sensory inputs to individual glomeruli are spatially heterogeneous but seem to be functionally indiscriminate. These results support the view of olfactory glomeruli as functional units in representing sensory information.
منابع مشابه
What does local functional hyperemia tell about local neuronal activation?
In the brain, neuronal activation triggers a local increase in cerebral blood flow, a response named functional hyperemia. The extent to which functional hyperemia faithfully reports brain activation, spatially or temporally, remains a matter of debate. Here, we used the olfactory bulb glomerulus as a neurovascular model and two-photon microscopy imaging to investigate the correlation between c...
متن کاملInhibitory connections in the honeybee antennal lobe are spatially patchy.
The olfactory system is a classical model for studying sensory processing. The first olfactory brain center [the olfactory bulb of vertebrates and the antennal lobe (AL) of insects] contains spherical neuropiles called glomeruli. Each glomerulus receives the information from one olfactory receptor type. Interglomerular computation is accomplished by lateral connectivity via interneurons. Howeve...
متن کاملRole of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study.
The primary olfactory brain center, the antennal lobe (AL) in insects or the olfactory bulb in vertebrates, is a notable example of a neural network for sensory processing. While physiological properties of the input, the olfactory receptor neurons, have become clearer, the operation of the network itself remains cryptic. Therefore we measured spatio-temporal odor-response patterns in the outpu...
متن کاملOdorant Response Properties of Individual Neurons in an Olfactory Glomerular Module
Neuronal networks that are directly associated with glomeruli in the olfactory bulb are thought to comprise functional modules. However, this has not yet been experimentally proven. In this study, we explored the anatomical and functional architecture of glomerular modules using in vivo two-photon calcium imaging. Surprisingly, the deep portions of the glomerular modules showed considerable spa...
متن کاملIntegrating temperature with odor processing in the olfactory bulb.
Temperature perception has long been classified as a somesthetic function solely. However, in recent years several studies brought evidence that temperature perception also takes place in the olfactory system of rodents. Temperature has been described as an effective stimulus for sensory neurons of the Grueneberg ganglion located at the entrance of the nose. Here, we investigate whether a neuro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 24 شماره
صفحات -
تاریخ انتشار 2004